Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet–Induced Obese Mice

Amylin/Calcitonin Receptor–Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice


Amylin, a pancreatic hormone and neuropeptide, acts principally in the hindbrain to decrease food intake and has recently been shown to act as a neurotrophic factor to control the development of area postrema → nucleus of the solitary tract and arcuate hypothalamic nucleus → paraventricular nucleus axonal fiber outgrowth. Amylin is also able to activate ERK signaling specifically in POMC neurons independently of leptin. For investigation of the physiological role of amylin signaling in POMC neurons, the core component of the amylin receptor, calcitonin receptor (CTR), was depleted from POMC neurons using an inducible mouse model. The loss of CTR in POMC neurons leads to increased body weight gain, increased adiposity, and glucose intolerance in male knockout mice, characterized by decreased energy expenditure (EE) and decreased expression of uncoupling protein 1 (UCP1) in brown adipose tissue. Furthermore, a decreased spontaneous locomotor activity and absent thermogenic reaction to the application of the amylin receptor agonist were observed in male and female mice. Together, these results show a significant physiological impact of amylin/calcitonin signaling in CTR-POMC neurons on energy metabolism and demonstrate the need for sex-specific approaches in obesity research and potentially treatment.

  • Received August 27, 2019.
  • Accepted February 28, 2020.

Source link