Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment After Acute Myocardial Infarction in Patients With Type 2 Diabetes

Lactogens Reduce Endoplasmic Reticulum Stress–Induced Rodent and Human β-Cell Death and Diabetes Incidence in Akita Mice


Abstract

Diabetes occurs due to a loss of functional β-cells, resulting from β-cell death and dysfunction. Lactogens protect rodent and human β-cells in vitro and in vivo against triggers of β-cell cytotoxicity relevant to diabetes, many of which converge onto a common pathway of endoplasmic reticulum (ER) stress. However, whether lactogens modulate the ER stress pathway is unknown. This study examines whether lactogens can protect β-cells against ER stress and mitigate diabetes incidence in Akita (Ak) mice, a rodent model of ER stress–induced diabetes, akin to neonatal diabetes in humans. We show that lactogens protect INS-1 cells, primary rodent and human β-cells in vitro against two distinct ER stressors, tunicamycin and thapsigargin, through activation of the JAK2/STAT5 pathway. Lactogens mitigate expression of proapoptotic molecules in the ER stress pathway that are induced by chronic ER stress in INS-1 cells and rodent islets. Transgenic expression of placental lactogen in β-cells of Ak mice drastically reduces the severe hyperglycemia, diabetes incidence, hypoinsulinemia, β-cell death, and loss of β-cell mass observed in Ak littermates. These are the first studies in any cell type demonstrating that lactogens modulate the ER stress pathway, causing enhanced β-cell survival and reduced diabetes incidence in the face of chronic ER stress.

  • Received September 10, 2019.
  • Accepted April 20, 2020.



Source link